SysBench manual

Alexey Kopytov <kaanps@ser s. sour cef or ge. net >

SysBench manual
by Alexey Kopytov
Copyright © 2004-2009 MySQL AB

Table of Contents

U L o PSPPI
(€1 g 1c = I = G PSPPSR UPPPPT
Common command [iNE OPLIONSiiiiiiiie et
BalCh MOTE ... e
TESE MOUES ..ttt ettt et a e et et e et et e et et e e e e a e e enaas

(o] o1 PP SPPPTTRPPPPIN

010 PP PPN

Chapter 1. Introduction

SysBench is amodular, cross-platform and multi-threaded benchmark tool for evaluating OS parameters
that are important for a system running a database under intensive load.

Theideaof thisbenchmark suiteisto quickly get animpression about system performance without setting
up complex database benchmarks or even without installing a database at all.

Features of SysBench

Current features allow to test the following system parameters:

file I/O performance

scheduler performance

memory allocation and transfer speed
POSIX threads implementation performance

database server performance

Design

The design is very simple. SysBench runs a specified number of threads and they all execute requestsin
parallel. The actual workload produced by requests depends on the specified test mode. You can limit
either the total number of requests or the total time for the benchmark, or both.

Available test modes are implemented by compiled-in modules, and SysBench was designed to make
adding new test modes an easy task. Each test mode may have additional (or workload-specific) options.

Links

Home page http://sysbench.sf.net/.
Download http://sf.net/projects/sysbench/.
Mailing lists sysbench-general [http://sourceforge.net/mail/?

group_id=102348]

Web forums » Developers [http://sourceforge.net/forum/forum.php?

forum_id=353125]

* Help [http://sourceforge.net/forum/forum.php?
forum _id=353124]

* Open discussion [http://sourceforge.net/forum/
forum.php?forum_id=353123]

Bug tracking system e Bug reports [http://sourceforge.net/tracker/?

atid=631676& group_id=102348& func=browse]

e Feature requests [http://sourceforge.net/tracker/?
atid=631679& group_id=102348& func=browse]

http://sysbench.sf.net/
http://sf.net/projects/sysbench/
http://sourceforge.net/mail/?group_id=102348
http://sourceforge.net/mail/?group_id=102348
http://sourceforge.net/mail/?group_id=102348
http://sourceforge.net/forum/forum.php?forum_id=353125
http://sourceforge.net/forum/forum.php?forum_id=353125
http://sourceforge.net/forum/forum.php?forum_id=353125
http://sourceforge.net/forum/forum.php?forum_id=353124
http://sourceforge.net/forum/forum.php?forum_id=353124
http://sourceforge.net/forum/forum.php?forum_id=353124
http://sourceforge.net/forum/forum.php?forum_id=353123
http://sourceforge.net/forum/forum.php?forum_id=353123
http://sourceforge.net/forum/forum.php?forum_id=353123
http://sourceforge.net/tracker/?atid=631676&group_id=102348&func=browse
http://sourceforge.net/tracker/?atid=631676&group_id=102348&func=browse
http://sourceforge.net/tracker/?atid=631676&group_id=102348&func=browse
http://sourceforge.net/tracker/?atid=631679&group_id=102348&func=browse
http://sourceforge.net/tracker/?atid=631679&group_id=102348&func=browse
http://sourceforge.net/tracker/?atid=631679&group_id=102348&func=browse

Introduction

Installation

If you are building SysBench from a Bazaar repository rather than from arelease tarball, you should run
Jautogen.sh before building.

The following standart procedure will be sufficient to build SysBench in most cases:

./ configure
make
make install

The above procedure will try to compile SysBench with MySQL support by default. If you have
MySQL headers and libraries in non-standard locations (and no mysql_config can be found in the PATH
environmental variable), then you can specify them explicitly with - - wi t h- nysql - i ncl udes and
--wi th-nysql -1i bs optionsto ./configure.

To compile SysBenchwithout MySQL support, use- - wi t hout - nysql . Inthiscaseall database-related
test modes will be unavailable.

If you are running on a 64-bit platform, make sure to build a 64-bit binary by passing the proper target
platform and compiler options to configure script. You can also consult the INSTALL file for generic
installation instructions.

Chapter 2. Usage

General syntax

The general syntax for SysBench is as follows:
sysbench [conmmon-options] --test=nane [test-options] comand
See the section called “Common command line options” for a description of common options and

documentation for particular test mode for alist of test-specific options.

Below isabrief description of available commands and their purpose:

prepare Performs preparative actions for those tests which need them, e.g. creating the necessary
filesondisk for thefi | ei o test, or filling the test database for the ol t p test.

run Runs the actual test specified with the - - t est =nane option.

cleanup Removes temporary data after the test run in those tests which create one.

help Displays usage information for atest specified with the - - t est =nane option.

Also you can use syshbench help to display the brief usage summary and the list of available test modes.

Common command line options

The table below lists the supported common options, their descriptions and default values:

Option Description Default value
--numt hr eads The total number of worker|1
threads to create
--max-requests Limit for total number of requests.| 10000
0 means unlimited
--max-tinme Limit for total execution time O
in seconds. 0 (default) means
unlimited
- -for ced- shut down Amount of time to wait|off

after --max-time before forcing
shutdown. The value can be either
an absolute number of seconds
or as a percentage of the - -
max- ti me value by specifying a
number of percents followed by
the '%' sign.

"of f" (the default value) means
that no forced shutdown will be
performed.

--thread-st ack-si ze Size of stack for each thread 32K

Usage

--init-rnd Specifies if random numbers|off
generator should be initialized
from timer before the test start

--test Name of the test mode to run Required
--debug Print more debug info off
--validate Perform validation of test results| off
where possible
--help Print help on general syntax or on| off
a test mode specified with --test,
and exit
--verbosity Verbosity level (0 - only critical |4

messages, 5 - debug)

--percentile SysBench measures execution| 95
times for all processed requests
to display statistical information
like minima, average and
maximum execution time. For
most benchmarks it is also useful
to know a request execution time
value matching some percentile
(eg. 95% percentile means we
should drop 5% of the most long
reguests and choose the maximal
value from the remaining ones).

This option allows to specify a
percentile rank of query execution
times to count

--batch Dump current results periodically | off
(see the section called “Batch
mode”)

- -bat ch-del ay Delay between batch dumps in|300
secods (see the section caled
“Batch mode”)

--validate Perform validation of test results| off
where possible

Note that numerical values for al size options (like - - t hr ead- st ack- si ze in this table) may be
specified by appending the corresponding multiplicative suffix (K for kilobytes, M for megabytes, G for
gigabytesand T for terabytes).

Batch mode

In some cases it is useful to have not only the final benchmarks statistics, but also periodical dumps of
current stats to see how they change over the test run. For this purpose SysBench has a batch execution
mode which is turned on by the - - bat ch option. You may specify the delay in seconds between the
conseguent dumps with the - - bat ch- del ay option. Example:

sysbench --batch --batch-del ay=5 --test=threads run

Usage

Thiswill run SysBench in a threads test mode, with the current values of minimum, average, maximum
and percentile for request execution times printed every 5 seconds.

Test modes

This section gives a detailed description for each test mode available in SysBench.

cpu
The cpu is one of the most simple benchmarks in SysBench. In this mode each request consists
in calculation of prime numbers up to a value specified by the - - cpu- max- pri mes option. All
calculations are performed using 64-bit integers.
Each thread executes the requests concurrently until either the total number of requests or the total
execution time exceed the limits specified with the common command line options.
Example:
sysbench --test=cpu --cpu-max-prinme=20000 run
t hr eads
This test mode was written to benchmark scheduler performance, more specifically the cases when a
scheduler has alarge number of threads competing for some set of mutexes.
SysBench creates a specified number of threads and a specified humber of mutexes. Then each thread
starts running the requests consisting of locking the mutex, yielding the CPU, so the thread is placed in the
run queue by the scheduler, then unlocking the mutex when the thread is rescheduled back to execution.
For each request, the above actions are run several timesin aloop, so the more iterations is performed,
the more concurrency is placed on each mutex.
The following options are available in this test mode:
Option Description Default value
--thread-yields Number of locklyield/unlock| 1000
loops to execute per each request
--thread- 1| ocks Number of mutexesto create 8
Example:
sysbench --numthreads=64 --test=threads --thread-yiel ds=100 --thread-1ocks=2 r
mut ex

This test mode was written to emulate a situation when al threads run concurrently most of the time,
acquiring the mutex lock only for a short period of time (incrementing a global variable). So the purpose
of this benchmarksis to examine the performance of mutex implementation.

The following options are available in this test mode:

Usage

Option Description Default value

- - mut ex- num Number of mutexes. The actual | 4096
mutex to lock is chosen randomly
before each lock

- -mut ex- 1 ocks Number of mutex locks to acquire| 50000
per each request

- - mut ex- | oops Number of iterationsfor an empty | 10000
loop to perform before acquiring
the lock

menory

Thistest mode can be used to benchmark sequential memory reads or writes. Depending on command line
options each thread can access either aglobal or aloca block for all memory operations.

The following options are available in this test mode:

Option Description Default value
--menory- bl ock-si ze Size of memory block to use 1K
- - menory- scope Possible values: gl obal ,|global

| ocal . Specifies whether each
threed will use a globaly
alocated memory block, or alocal

one.
--menory-total-size Total size of datato transfer 100G
- - menory- oper Type of memory operations.|100G

Possiblevalues. read, wi t e.

filelo

This test mode can be used to produce various kinds of file I/O workloads. At the pr epar e stage
SysBench creates a specified number of fileswith a specified total size, then at ther un stage, each thread
performs specified 1/O operations on this set of files.

Whentheglobal - - val i dat e optionisusedwiththef i | ei o test mode, SysBench performschecksums
validation on all dataread from the disk. On each write operation the block isfilled with random values,
then the checksum is calculated and stored in the block along with the offset of this block within afile.
On each read operation the block is validated by comparing the stored offset with the real offset, and the
stored checksum with the real calculated checksum.

The following I/O operations are supported:

seqwr sequential write
seqrewr sequential rewrite
seqrd sequentia read
rndrd random read
rndwr random write

Usage

rndrw combined random read/write

Also, the following file access modes can be specified, if the underlying platform supports them:

Asynchronous I/O mode

Slow mmap() mode

Fast mmap() mode

Using f dat async() instead of f sync()

Additional flagsto open(2)

At the moment only Linux AIO
implementation is supported. When running
in asynchronous mode, SysBench queues a
specified number of 1/O requests using Linux
AIO AP, then waits for at least one of
submitted requests to complete. After that a
new series of I/O requests is submitted.

In this mode SysBench will use mmap'ed I/
O. However, a separate nmmap will be used
for each 1/0O request due to the limitation of
32-bit architectures (we cannot mmap() the
whole file, as its size migth possibly exceed
the maximum of 2 GB of the process address

space).

On 64-bit architectures it is possible to
nmrap() the whole file into the process
address space, avoiding thelimitation of 2 GB
on 32-hit platforms.

SysBench can use additional flags to
open(2),suchasO_SYNC, O DSYNC and
O_DI RECT.

Below isalist of test-specific option for the fileio mode:

Option Description Default value
--file-num Number of filesto create 128
--file-block-size Block size to use in al 1/0|16K
operations
--file-total -size Total size of files 2G
--file-test-node Type of workload to|required
produce. Possiblevalues: seqwr ,
seqrew, seqrd, rndrd,
rndw , r ndwr (seeabove)
--file-io-node 1/0 mode. Possible values: sync,|sync
async, f ast nmap, sl ownmrap
(only if supported by the platform,
see above).
--file-async-backl og Number of asynchronous| 128
operations to queue per
thread (only for --file-io-
node=async, see above)
--file-extra-fl ags Additional flags to use with
open(2)

Usage

--file-fsync-freq Dof sync() after thisnumber of | 100
requests (0 - don't usef sync())

--file-fsync-all Do fsync() after each write|no
operation

--file-fsync-end Dof sync() attheend of thetest|yes

--file-fsync-node Which method to use for|fsync

synchronization. Possible values:
f sync,f dat async (seeabove)

--file-merged-requests |Merge at most this number of 1/{0
O requests if possible (0 - don't
merge)

--file-rwratio reads/writes ration for combined|1.5
random read/write test

Usage example:

$ sysbench --numthreads=16 --test=fileio --file-total-size=3G --file-test-no
$ sysbench --numthreads=16 --test=fileio --file-total-size=3G --file-test-no
$ sysbench --numthreads=16 --test=fileio --file-total-size=3G --file-test-no

Inthe above examplethefirst command creates 128 fileswith the total size of 3 GB inthe current directory,
the second command runs the actual benchmark and displays the results upon completion, and the third
one removes the files used for the test.

oltp

Thistest mode was written to benchmark areal database performance. At the prepar e stage the following
tableis created in the specified database (sbt est by default):

CREATE TABLE “sbtest™ (

“id int(10) unsigned NOT NULL auto_increnent,
"k’ int(10) unsigned NOT NULL default 'O0',

‘¢’ char(120) NOT NULL default '',

“pad’ char(60) NOT NULL default '',

PRI MARY KEY ('id"),

KEY “k* ("k7);

Then thistable isfilled with a specified number of rows.

The following execution modes are available at the run stage:

Simple In thismode each thread runs simple queries of the
following form:

SELECT ¢ FROM sbtest VWHERE i d=N

where N takes a random value in range 1..<table
size>

Usage

Advanced transactional Each thread performstransactionson thetest table.
If the test table and database support transactions
(e.g. InnoDB engine in MySQL), then BEG N/
COW T statements will be used to start/stop a
transaction. Otherwise, SysBench will use LOCK
TABLES/UNLOCK TABLES statements (e.g.
for MylISAM engine in MySQL). If some rows
are deleted in atransaction, the same rows will be
inserted within the same transaction, so this test
mode does not destruct any data in the test table
and can be run multiple times on the same table.
Depending on the command line options, each
transaction may contain the following statements:
» Point queries:
SELECT ¢ FROM sbtest WHERE i d=N
* Range queries:
SELECT ¢ FROM sbtest WHERE id BETWEEN N AND
» Range SUM() queries:
SELECT SUM K) FROM sbtest WHERE i d BETWEEN |
» Range ORDER BY queries:
SELECT ¢ FROM sbtest WHERE id between N and
* Range DISTINCT queries:
SELECT DI STINCT ¢ FROM sbtest WHERE i d BETW
* UPDATES on index column:
UPDATE sbt est SET k=k+1 WHERE i d=N
» UPDATES on non-index column:
UPDATE sbt est SET c¢c=N WHERE i d=M
« DELETE queries:
DELETE FROM sbt est WHERE i d=N
* INSERT queries:
| NSERT | NTO sbtest VALUES (...)
Non-transactional This mode is similar to Simple, but you can
also choose the query to run. Note that unlike
the Advanced transactional mode, this one does
not preserve the test table between requests,

so you should recreate it with the appropriate
cleanup/pr epar e commands between consecutive

9 benchmarks.

Usage

Below isalist of possible queries:

« Point queries:

SELECT pad FROM sbtest WHERE i d=N

« UPDATEson index column:

UPDATE sbtest SET k=k+1 WHERE i d=N

* UPDATES on non-index column:

UPDATE sbtest SET c=N VWHERE i d=M

« DELETE queries:

DELETE FROM sbt est WHERE i d=N

The generated row | Ds are unique over each test

run, so no row is deleted twice.
« INSERT queries:

I NSERT | NTO sbtest (k,

Below isalist of options available for the database test mode:

C,

pad) VALUES(N, M

Option

Description

Default value

--ol tp-test-node

Execution mode (see above).
Possible values: si mpe
(smple), conpl ex (advanced
transactional) and nont r x (non-
transactional)

conpl ex

--oltp-read-only

Read-only mode. No UPDATE,
DELETE or | NSERT queries will
be performed.

off

--oltp-skip-trx

Omit BEG NNCOW T
statements, i.e. run the same
gueries asthe test would normally
run but without using transactions.

off

--ol t p-reconnect - node

Reconnect mode. Possible values:

Don't reconnect
(i.e. each thread
disconnects
only at the end
of the test)

sessi on

Reconnect after
each SQL
query

t ransact i on Reconnect after
each

query

transaction (if

sessi on

10

Usage

transactions are
used in the
selected DB
test)

One of the
above modes
is randomly

chosen for each

random

transaction

--ol t p-range-si ze

Range size for range queries

100

--ol tp-point-selects

Number of point select queriesin
asingle transaction

10

--ol tp-sinpl e-ranges

Number of simplerangequeriesin
asingle transaction

--ol t p-sumranges

Number of SUM range queriesin
asingle transaction

--ol t p-order-ranges

Number of ORDER range queries
in asingle transaction

--ol tp-distinct-ranges

Number of DISTINCT range
queriesin asingle transaction

--ol t p-i ndex- updat es

Number of index UPDATE
gueriesin asingle transaction

--ol t p-non-i ndex-
updat es

Number of non-index UPDATE
queriesin asingle transaction

--ol t p-nontr x- node

Type of queries for
non-transactional execution
mode (see above). Possible
values. sel ect, updat e_key,
updat e_nokey, i nsert,

del et e.

sel ect

--ol t p-connect - del ay

Time in microseconds to sleep
after each connection to database

10000

--ol tp-user-del ay-nmn |Minimumtimeinmicrosecondsto|0
sleep after each request

--ol t p-user-del ay-max |Maximum time in microseconds|O
to sleep after each request

--ol t p-tabl e- nanme Name of the test table shtest

--oltp-tabl e-size Number of rows in the test table | 10000

--oltp-dist-type Distribution of random numbers.|speci al
Possible values: uni form
(uniform distribution), gauss
(gaussian distribution) and
speci al .

With specia distribution a

specified percent of numbers is

11

Usage

generated in a specified percent of
cases (see options below).

--ol tp-di st-pct Percentage of values to be|l
treated as 'specia' (for specid
distribution)

--oltp-dist-res Percentage of cases when 'specia’| 75
values are generated (for specia
distribution)

- - db- ps- node If the database driver supports|aut o
Prepared Statements AP,
SysBench will use server-side
prepared statementsfor all queries
where possible. Otherwise, client-
side (or emulated) prepared
statements will be used. This
option alows to force using
emulation even when PS API
is available. Possible vaues:
di sabl e, aut o.

Also, each database driver may provideits own options. Currently only MySQL driver isavailable. Below
isalist of MySQL-specific options:

Option Description Default value

--mysgl - host MySQL server host. | ocal host

Starting from version 0.4.5 you
may specify a list of hosts
separated by commas. In this
case SysBench will distribute
connections between specified
MySQL hosts on a round-robin
basis. Note that al connection
ports and passwords must be the
same on all hosts. Also, databases
and tables must be prepared
explicitdly on each host before
executing the benchmark.

--mysql - port MySQL server port (in case TCP/| 3306
IP connection should be used)
--mysgl - socket Unix socket file to communicate
with the MySQL server
--mysgl - user MySQL user user
--mysqgl - password MySQL password
--mysqgl -db MySQL database name. Note|sbtest

SysBench will not automatically
create this database. You should
create it manually and grant the
appropriate privileges to a user
which will be used to access the
test table.

12

Usage

--nysql -t abl e- engi ne Type of the test table. Possible|innodb
values: nyi sam i nnodb,
heap, ndbcluster, bdb,
mari a, fal con, pbxt

--nysql - ssl Use SSL connections. no

- - nyi sam max-r ows MAX_ROWS option for| 1000000
MyISAM tables (required for big
tables)

--nysql -create-options |Additional options passed to
CREATE TABLE.

Example usage:

$ sysbench --test=oltp --nysql-tabl e-type=nyi sam --ol t p-tabl e-si ze=1000000 - - ny
$ sysbench --numthreads=16 --nax-requests=100000 --test=oltp --oltp-table-size

The first command will create a MylSAM table 'sbtest' in a database 'shtest' on aMySQL server using /
t np/ mysqgl . sock socket, then fill thistable with 1M records. The second command will run the actual
benchmark with 16 client threads, limiting the total number of request by 100,000.

13

